: : - - T T} AR
Does lossy iImage compression affect racial bias within face recognition: NV Durham

Seyma Yucer, Matthew Poyser, Noura Al Moubayed and Toby P. Breckon University

Motivation Lossy Compression & Subsampling Results
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Methodology

We adopt a racial bias analysis methodology that uses facial phe-

notype attributes for face verification task [1]. Compression Level SelectiOn

Figure 2: Chroma subsampling operation on different rates (4:2:0, 4:2:2, 4:4:4).
Each rate differs according to how many pixels will be the same in the block.
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We analyse uniformly distributed compression levels on the RFW
benchmark face recognition dataset using PSNR and down-se-
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a lected 5, 10, 15, and 95 compression levels in which quality de-
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5 s Using ArcFace [2] as a baseline, we find:
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5 3% - Compressed test imagery increases FMR and decrease accuracy
g 5 significantly on specific phenotypes, including dark skin tone,
< wide nose, curly hair, and monolid eye across other phenotypes.
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} o 3 5 - The use of compressed imagery during training does make the

g & 0 models more resilient and limits the performance degradation.
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5 2 fE;Z‘; - Removing chroma subsampling improves FMR for specific phe-
S & hotype categories more affected by lossy compression.
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Figure 3: PSNR Scores of RFW dataset on different compression levels (CL). Relative score ‘g 93% — —
difference shows how much the quality changes at each level. g 010, _ _
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Figure 1: Adapted Facial phenotype attributes and their categorisation from [1]. loss for deep face recognition_” Proc. CVPR, 2019

Figure 5: Accuracy and standard deviation of all attribute categories and their
comparison on different training strategies using compressed (g = 75) of RFW.



